skip to main content


Search for: All records

Creators/Authors contains: "He, Dawei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to their atomic thinness with reduced dielectric screening, two-dimensional materials can possess a stable excitonic population at room temperature. This is attractive for future excitonic devices, where excitons are used to carry energy or information. In excitonic devices, controlling transport of the charge-neutral excitons is a key element. Here we show that exciton transport in a MoSe 2 monolayer semiconductor can be effectively controlled by dielectric screening. A MoSe 2 monolayer was partially covered with a hexagonal boron nitride flake. Photoluminescence measurements showed that the exciton energy in the covered region is about 12 meV higher than that in the uncovered region. Spatiotemporally resolved differential reflection measurements performed at the junction between the two regions revealed that this energy offset is sufficient to drive excitons across the junction for about 50 ps over a distance of about 200 nm. These results illustrate the feasibility of using van der Waals dielectric engineering to control exciton transport and contribute to understanding the effects of the dielectric environment on the electronic and optical properties of two-dimensional semiconductors. 
    more » « less
  2. Charge-transfer excitons are formed by photoexcited electrons and holes following charge transfer across a heterojunction. They are important quasiparticles for optoelectronic applications of semiconducting heterostructures. The newly developed two-dimensional heterostructures provide a new platform to study these excitons. We report spatially and temporally resolved transient absorption measurements on the dynamics of charge-transfer excitons in a MoS 2 /WS 2 /MoSe 2 trilayer heterostructure. We observed a non-classical lateral diffusion process of charge-transfer excitons with a decreasing diffusion coefficient. This feature suggests that hot charge-transfer excitons with large kinetic energies are formed and their cooling process persists for about 100 ps. The long energy relaxation time of excitons in the trilayer compared to its monolayer components is attributed to the reduced carrier and phonon scattering due to the dielectric screening effect in the trilayer. Our results help develop an in-depth understanding of the dynamics of charge-transfer excitons in two-dimensional heterostructures. 
    more » « less
  3. We fabricated a van der Waals heterostructure of WS 2 –ReSe 2 and studied its charge-transfer properties. Monolayers of WS 2 and ReSe 2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS 2 monolayer on top of ReSe 2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS 2 to ReSe 2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe 2 to WS 2 was also observed. The charge-transfer properties show that monolayers of ReSe 2 and WS 2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe 2 for novel electronic and optoelectronic applications and introduce ReSe 2 to the family of two-dimensional materials to construct van der Waals heterostructures. 
    more » « less